
PriVaricator
PREVENTING STATELESS TRACKING

ON THE WEB

Ben Livshits (MSR)

Nick Nikiforakis (SUNY

Stony Brook)

INVOLVED IN A NUMBER OF TOPICS

analysis of desktop

and mobile

applications

detection of malware

web security augmented reality

PRIVARICATOR

Upcoming paper in
WWW’15

Read it for more details

COOKIE-BASED TRACKING

COOKIES AND PRIVACY

A key topic in
Web application
privacy in the
last several
years

The majority of
focus is on
cookie-based
tracking

LOTS AND LOTS OF ADVERTISING COMPANIES

a.com

b.com

c.com

z.com

…

COOKIES ON A POPULAR NEWS SITE

truste.com

TODAY, A VISIT TO HUFFINGTONPOST.COM RESULTS IN…

A FUNDAMENTAL UNDERLYING QUESTION

Why profile the user?

INFERENCE BASED ON
COOKIES

Ad tracking

company

[x+1] made

predictions

about users

based on

just one

website click

(from WSJ)

BLOCK THIRD-PARTY COOKIES

DO-NOT-TRACK INITIATIVE

EU COOKIE REGULATIONS

NOT EVERYBODY IS FOND OF THE COOKIE LAW

STATELESS TRACKING

STATELESS FINGERPRINTING

Emerges around 2010 as a project from
the EFF

Since then, has been replicated in
various settings, including by academic
researchers

In the last two years we have seen active
fingerprinting from several large
advertising targeting companies:
BlueCava, Iovation, and ThreatMetrix

headers

plugins

fonts

time zone

fingerprint

Of the 470,000-plus users
who had participated at
that point in his
public Panopticlick project,
84 percent of their
browsers produced unique
fingerprints

94 percent if you count
those that supported Flash
or Java)

PANOPTICLICK

https://panopticlick.eff.org/

FINGERPRINT.JS: FINGERPRINTING LIB ON GITHUB

BLUE CAVA FINGERPRINTING IN ACTION

CURRENT STATE OF FINGERPRINTING?

Results in Cookieless monster showed that
159 of Alexa’s 10,000 most-visited
websites track their users with such
fingerprinting software.

Also found that more than 400 of the
million most popular websites on the
Internet have been using JavaScript-only
fingerprinting, which works on Flash-less
devices such as the iPhone or iPad.

Users continue to be fingerprinted even
if they have checked “Do Not Track” in
their browser’s preferences

But it’s a little hard to say how much is
really going on in practice

Fingerprinting is designed to remain
pretty invisible

At the same time, we should expect more
in this space because of cookie-based
tracking becoming problematic

http://www.alexa.com/

PRIVARICATOR

INSIGHT OF PRIVARICATOR

Most prior research focuses on making
fingerprints not unique

For example, they make
navigator.userAgent to always be
Firefox

They strip revealing headers, etc.

Typically this is done via browser
extenions

What is the effect of that?

The focus on user uniqueness is
misguided

What matters is fingerprint linkability

Making fingerprints non-deterministic
also makes them hard to link across
browsing sessions

It’s often easier to randomize the
fingerprint than to keep in the same

USE “PLUGGABLE” RANDOMIZATION POLICIES

We explore a space of randomization

policies designed to produce unique

fingerprints

Change the way the browser represents

certain important properties (offsetHeight

used to measure the presence of fonts) and

plugins, to the JavaScript environment

Creatively misrepresenting — or lying —

about these values introduces an element of

non-determinism, which generally

makes fingerprints unlinkable over visits

Producing practically impossible

combinations of, say, browser headers

and the navigator object, can actually

reduce user privacy

Blatant lying is not such a good idea

Can significantly degrade user experience

by, for instance, by presenting Firefox-

optimized sites to users of IE, leading to

visual discrepancies or calls into missing APIs

A GOOD RANDOMIZATION POLICY SHOULD…

1) produce unlinkable fingerprints; and

2) not break existing sites

EXTENSION TO THE PRIVACY MODE

Browsers today already come with a private mode

Designed to combat stateful (cookie-based) fingerprinting

PriVaricator adds protection against stateless fingerprinting

Built on top of Chromium and can be integrated directly into the browser

Deploying it as an extension is not a such a good idea because it may make

the user more identifiable, not less

WHAT TO MISREPRESENT?

Need to balance fingerprinting prevention with breaking existing sites

For example, navigator.userAgent is a bad thing to misrepresent

Likely to lead to a lot of site breakage

plugins

fonts

SPACE OF RANDOMIZATION POLICIES

Policies for offset measurements

For the values of offsetHeight, offsetWidth, and
getBoundingClientRect in PriVaricator, we propose the
following numeric randomization policies

a) Zero

b) Random(1..100)

+/- 5% noise

The policies are parametrized by the lying threshold
(denoted as θ) and a lying probability (denoted as
P(lie)).

θ controls how fast PriVaricator starts lying, i.e., after
how many accesses to offsetWidth or offsetHeight
values, will the policy kick in

Policies for plugins

P(plug_hide) the probability of hiding
each individual plugin in
navigator.plugins

SAMPLE RANDOMIZATION POLICY

start lying after 50 offset accesses

only lie in 20% of the cases

respond with the

value 0 when lying

hide 30% of the browser’s plugins

BREAKAGE CONCERNS

82.3% of scripts have 0

accesses to offsetHeight

Out of Alexa 10,000

1.87% of scripts have 50+

accesses when visited

most are ranked pretty low

but don’t want to break

spiegel.de

POLICY IMPLEMENTATION IN THE BROWSER

Strawman approach

Instrumented access to navigator.plugins
at the source level

Try to intercept calls to offsetWidth and
offsetHeight using DOM getters

However, it’s difficult to know which
element will be measured

offsetWidth and offsetHeight
properties are not part of the
HTMLElement prototypе

Real implementation

Instrument access to the properties of
interest

Browser changes are, by nature, very
local

Our full prototype involves modifications
to a total of seven files in the WebKit
implementation of the Chromium
browser, version 34.0.1768.0 (242762)

947 lines of code added/changed

EVALUATION

EVALUATION: DIMENSIONS

Performance impact

Effectiveness in breaking existing fingerprinters

Minimizing breakage

SLOWDOWN? IN THE NOISE

Executed each suite five times, clearing the
browser’s cache in between runs

The experiments were run on a desktop
machine, running a recent Ubuntu Linux
distribution, with an Intel Core i5-3570 CPU @
3.40 GHz processor, and 8 GB
of RAM

To calculate the upper bound of PriVaricator’s
overhead, we used the lying policy with the most
computations (± 5% Noise) configured
with the worst (from a performance point of view)
parameter settings, i.e., , θ=0 and P(lie)=100%

IS IT EFFECTIVE?

1) BlueCava
 http://bluecava.com/opt-out

 Shows fingerprints such as 18B1-EBFC-A3F0-6D81-6DE8-D8DA-
CA56-A22B

2) PetPortal
 http://fingerprint.pet-portal.eu

 Similarly, get a fingerprint

3) Coinbase
 Obtained entirely client-side

 Can be captured

 MD5 applied to it and it’s submitted via a cookie

4) fingerprintjs
 That’s the code we saw earlier

To explore the space of possible policies in
detail, we performed an automated
experiment where we visited each
fingerprinting provider 1,331 times, to
account for 113 parameter combinations,
where each parameter of our randomized
policy

 lying threshold

 lying probability, and

 plugin-hiding probability

ranged from 0 to 100 in increments of 10

http://bluecava.com/opt-out
http://fingerprint.pet-portal.eu/

SUCCESS OF PRIVARICATOR

BlueCava

fingerprint.js

96.32% of all

fingerprints are unique

In nearly all intermediate points

(78.36% of the total set

of collected fingerprints),

randomness works in our favor

by returning different sets of

plugins, which, in turn, result in

different fingerprints

PRIVARICATOR STOPPING BLUE CAVA FINGERPRINTING

To make the results

more readable, we

show all the

configurations that

resulted in unique

fingerprints, instead of

showing clusters of

same fingerprints. It is evident that

PetPortal succeeds

more in tracking us

than BlueCava,

Coinbase, and

fingerprintjs

PETPORTAL: MOST ROBUST

Get unique

fingerprints for

“only” 37.83% of

the 1,331

parameter

combinations

Range of lying

probability of 10-

60% is most

effective. After 60%

it thinks all fonts are

present.

MEASURING BREAKAGE

When PriVaricator lies about these
values like offsetWidth and
offsetHeight, it creates a potential
for visual breakage

For example, by reporting that an
element is smaller than it actually is,
PriVaricator could cause the page to
place it in a smaller container, hiding
part of its content from the user.

Numerically, we define breakage as the
fraction of pixels that are different when a
site is loaded with a vanilla browser
(PriVaricator turned off) and with PriVaricator

We instrumented Chromium to visit the main
pages of the top 1,000 Alexa sites, for 48
different combinations of lying probability
and lying threshold; these were the parameter
combinations that resulted in unique
fingerprints for PetPortal

MEASURING BREAKAGE BY COUNTING PIXELS
Need to separate breakage caused by PriVaricator from naturally dynamic web pages

Collected a new vanilla-browser screenshot every ten visits of a page, resulting in a total of five extra screenshots

We computed a visual mask of differences appearing on them, and used it when comparing a screenshot captured
using a specific policy parameter combination, to the vanilla one

This mask can be applied to all PriVaricator screenshots to exclude the naturally varying parts of a page from
subsequent breakage comparisons.

Mask: unchanging

page elements

EXAMINING BREAKAGE RESULTS
Manually reviewed the 100 screenshots with the largest
breakage. In only 8 cases, the differences could be
attributed to PriVaricator.

In many cases, the sites would show an “in-page” pop-up
asking the user to participate in a survey

Next to surveys, the reported breakage was due to missing
or not-fully loaded ads, error-pages and image carousels

In one case, PriVaricator had caused a slight stretch of a
site’s background image. While this led to a large
computed breakage, users would not notice the change if
they could not compare the page with the original non-
stretched version.

We likely overestimated the breakage since most of the
pages with the highest reported breakage turned out to be
false positives.

Overall, the results of our breakage

experiments show that the negative effect that

PriVaricator has on a user’s browsing

experience is negligible.

CHALLENGES

Transparency

We do not claim to preserve transparency in
PriVaricator; indeed, this is a tough property to
maintain for just about any runtime protection
mechanism

A motivated fingerprinter could test for the
presence of unexpected randomness, e.g., by
inquiring about the dimensions of an element 100
times

A statistical attack may collect multiple
readings and average them over a large number
of samples, in an effort to approximate the real
measurement

Lie cache

Setting up a “lie cache”, a mechanism where
the browser would report the same false
value for multiple inquires about the same,
unmodified element

To break linkability, the lie cache should be
reset at the beginning of every new private
mode session, i.e., when a user is opening a
private mode tab or window of her browser.

This would enhance the transparency at the
cost of linkability within the same private
mode session.

CHALLENGES

Future fingerprinting vectors

Just like with most defense mechanisms, more
sophisticated attacks often are developed in
response to them.

Note, however, that as long as either plugins or
fonts are included as part of a user’s fingerprint
and relied upon to provide meaningful
information to the fingerprinting party, the current
version of PriVaricator is likely to provide
adequate randomization

Updating policies

Fluid browser updates enable changing PriVaricator
policies

Note that similar updates are shipped to
other browser-hosted security mechanisms such as XSS
filters, malware filters, and tracking protection lists
(TPLs)

Extensions such as ad blockers also update their
blacklists on a regular basis. As such, we feel that
PriVaricator provides an extensible platform for
stateless fingerprinting defenses

CONCLUSIONS

CONCLUSIONS

PriVaricator: an addition to the browser private mode

Designed to combat stateless tracking or fingerprinting

Negligible performance overhead

Effective for a range of policy parameter values

Breaks quite little (only a handful of sites) in our evaluation

